Convergence Rate of the Causal Jacobi Derivative Estimator

نویسندگان

  • Dayan Liu
  • Olivier Gibaru
  • Wilfrid Perruquetti
چکیده

Numerical causal derivative estimators from noisy data are essential for real time applications especially for control applications or fluid simulation so as to address the new paradigms in solid modeling and video compression. By using an analytical point of view due to Lanczos [9] to this causal case, we revisit n order derivative estimators originally introduced within an algebraic framework by Mboup, Fliess and Join in [14, 15]. Thanks to a given noise level δ and a well-suitable integration length window, we show that the derivative estimator error can be O(δ q+1 n+1+q ) where q is the order of truncation of the Jacobi polynomial series expansion used. This so obtained bound helps us to choose the values of our parameter estimators. We show the efficiency of our method on some examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Estimation of the Fractional Derivative of a Distribution Function

We propose an estimator for the α fractional derivative of a distribution function. Our estimator, based on finite differences of the empirical df generalizes the estimator proposed by Maltz (1974) for the nonnegative real case. The asymptotic bias, variance and the consistency of the estimator are studied. Finally, the optimal choice for the ”smoothing parameter” proves that even in the fracti...

متن کامل

Almost Sure Convergence of Kernel Bivariate Distribution Function Estimator under Negative Association

Let {Xn ,n=>1} be a strictly stationary sequence of negatively associated random variables, with common distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1, Xk+1) for fixed $K /in N$ based on kernel type estimators. We introduce asymptotic normality and properties and moments. From these we derive the optimal bandwidth...

متن کامل

A Berry-Esseen Type Bound for the Kernel Density Estimator of Length-Biased Data

Length-biased data are widely seen in applications. They are mostly applicable in epidemiological studies or survival analysis in medical researches. Here we aim to propose a Berry-Esseen type bound for the kernel density estimator of this kind of data.The rate of normal convergence in the proposed Berry-Esseen type theorem is shown to be O(n^(-1/6) ) modulo logarithmic term as n tends to infin...

متن کامل

Superconvergence Points for the Spectral Interpolation of Riesz Fractional Derivatives∗

In this paper, superconvergence points are located for the approximation of the Riesz derivative of order α using classical Lobatto-type polynomials when α ∈ (0, 1) and generalized Jacobi functions (GJF) for arbitrary α > 0, respectively. For the former, superconvergence points are zeros of the Riesz fractional derivative of the leading term in the truncated Legendre-Lobatto expansion. It is ob...

متن کامل

Jacobi Elliptic Numerical Solutions for the Time Fractional Dispersive Longwave Equation

The fractional derivatives in the sense of Caputo, and the homotopy analysis method (HAM) are used to construct the approximate solutions for nonlinear fractional dispersive long wave equation with reaspect to time fractional derivative. The HAM contains a certain auxiliary parameter which provides us with a simple way to adjust and control the convergence region and rate of convergence of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010